An in Situ EXAFS Investigation of Bimetallic Cu-Ni/ γ -Al₂O₃ Catalysts¹

G. U. KULKARNI, G. SANKAR, AND C. N. R. RAO²

Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India

Received November 9, 1990; revised April 26, 1991

In situ EXAFS investigations have been carried out on Ni/ γ -Al₂O₃ and Cu-Ni/ γ -Al₂O₃ catalysts with different metal loadings, and prepared by different procedures. As-prepared Ni/ γ -Al₂O₃ on calcination gives NiO and NiAl₂O₄-like phases on the surface, the proportion of the latter increasing with the increase in calcination temperature; the proportion of the NiO-like phase, on the other hand, increases with the metal loading. The reducibility of Ni/ γ -Al₂O₃ to give metallic Ni on the surface directly depends on the proportion of the NiO-like phase present before reduction. Co-impregnating with Cu suppresses the formation of the surface aluminate and thereby favours the reduction to metallic Ni. This conclusion is clearly substantiated by our studies of bimetallic catalysts containing varying Cu/Ni ratios and also those prepared by the two-stage impregnation procedure. © 1991 Academic Press, Inc.

INTRODUCTION

The catalytic performance of bimetallic catalysts is known to differ significantly from that of the individual components, often showing mutual promotion effects towards reduction (1-3) and increasing the thermal stability against sintering. Alloying of nickel with copper, for example, modifies the activity of the former in the hydrogenation of ethylene (4), benzene (5), and butadiene (6). Addition of Rh or Ru metal promoters significantly improves the stability of Ni/Al_2O_3 catalyst toward sintering (7). There have been several characterization studies on monometallic Cu/γ -Al₂O₃ and Ni/γ -Al₂O₃ catalysts. On the basis of optical, magnetic (8), ESR, EXAFS (9), and X-ray photoelectron spectroscopic (10) and temperature programmed reduction (11) measurements, it has been suggested that at low loading levels, the metal ions form surface aluminates (NiAl₂O₄, CuAl₂O₄). With an increase in metal loading, the monoxides (NiO, CuO) segregate out. It appears that the extent of reducibility depends on the reducibility behaviour of the aluminates. Characterization of silica-supported Ni–Cu catalysts has been reported by Bernardo *et al.* (12) who also review the early literature on this bimetallic system.

An earlier ex situ EXAFS study (13) on $Cu-Ni/\gamma-Al_2O_3$ catalysts has indicated the presence of Ni²⁺, Ni⁰, Cu¹⁺, and Cu⁰ in the reduced catalysts, the relative proportions of the different species depending on the composition. In this paper, we report results of a detailed investigation of the bimetallic $Cu-Ni/\gamma-Al_2O_3$ catalyst system in both the calcined and reduced states by in situ EXAFS measurements. The power of EXAFS in unravelling certain detailed features of such complex catalyst systems has been well documented (14). In order to understand the interaction of Ni with γ -Al₂O₃, we have carried out measurements on the $Ni/\gamma - Al_2O_3$ system as a function of the calcination temperature as well as the metal loading. We have prepared the bimetallic $Cu-Ni/\gamma-Al_{\gamma}O_{\gamma}$ catalysts by different procedures in order to clearly understand the competing behaviour of nickel and copper in forming aluminates with the γ -Al₂O₃ support and also to understand the mutual promo-

¹ Contribution No. 726 from Solid State and Structural Chemistry Unit.

² To whom correspondence should be addressed.

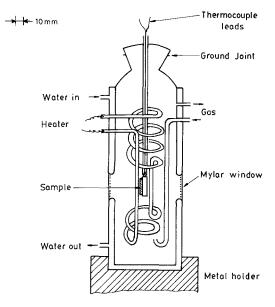


FIG. 1. Schematic diagram of the *in-situ* EXAFS cell made of quartz.

tion effects of Ni and Cu towards reduction. The study has indeed established that copper promotes the reduction of nickel, whereas copper itself is easily reducible.

EXPERIMENTAL

Catalyst Preparation

The catalyst samples were prepared by the pore-volume impregnation of γ -Al₂O₃ (200 m²/g) with aqueous solutions of Ni(NO₃)₂ and Cu(NO₃)₂ in appropriate ratios. We have prepared four types of catalysts as discussed below.

1. 5 wt.% of Ni on γ -Al₂O₃, calcined at different temperatures (370, 570, 770, and 970 K) for 3h (4 samples).

2. Bimetallic Cu–Ni/ γ -Al₂O₃ catalysts with a total metal loading of 5 wt.% with Ni to Cu ratios of 75 : 25, 50 : 50 and 25 : 75 along with samples containing the same loading of Cu and Ni alone (5 samples).

3. Bimetallic Cu–Ni/ γ -Al₂O₃ catalysts with a fixed Ni concentration (2.5 wt.%) but varying Ni to Cu ratios of 75:25, 50:50, and 25:75 along with samples containing Ni and Cu (each 2.5 wt.%) alone (5 samples).

4. Two samples with a Ni to Cu ratio of 50:50 (each 2.5 wt.%) prepared by twostage impregnation. In this method, the support was impregnated by one metal after another with an intermediate calcination at 770 K for 3 h.

The catalyst samples of categories 2, 3, and 4 were calcined at 770 K for 3 h after drying at 370 K for 12 h. Reductions were carried out in an all-quartz *in situ* EXAFS cell at 770 K for 3 h.

Apparatus and Procedure

The *in situ* EXAFS cell consists of a double-walled quartz tube having a ground joint at the top and closed at the bottom (Fig. 1). The sample heating element enclosed in a spiral quartz tube passes from the sides of the cell along with the gas inlet-outlet tubes. The sample in the form of a pellet of 20 mm diameter is mounted on a quartz sample holder hanging from the ground joint at the top. The sample holder contains a thermocouple just below the sample, to monitor the temperature. The cell has Mylar windows for transmission of X-rays and water was circulated through the double-walled cell in order to cool the ground joint and the Mylar windows.

The EXAFS spectra were recorded at room temperature using an X-ray absorption spectrometer (Rigaku, Japan) with a ro-

TABLE 1

Structural	Parameters	of Reference	Systems
------------	------------	--------------	---------

System	Atom pair	Interatomic distance R(Å)	Coordination number N				
Cu metal	Cu–Cu	2.56	12				
Cu ₂ O	Cu–O	1.84	2				
-	CuCu	3.02	12				
CuAl ₂ O ₄	Cu–O	1.91	4				
	Cu–O	1.93	6				
Ni metal	Ni–Ni	2.48	12				
NiO	Ni–O	2.08	6				
NiAl ₂ O ₄	NiO	1.83	4				
2 .	Ni-O	1.97	6				

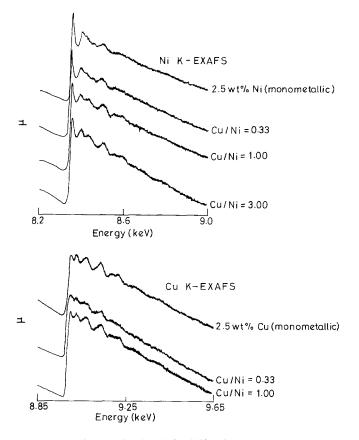


FIG. 2. Raw EXAFS data of reduced Cu-Ni/Al₂O₃ catalysts (with 2.5 wt.% Ni).

tating anode X-ray generator (Ru-200B, Rigaku, Japan). A Ge(220) crystal was used as a monochromator with a 0.1 mm slit. Spectral resolution was about 5 eV at 9 keV incident energy. The thickness of the samples was adjusted so that the edge jump was \simeq 1.5. Pre-edge data were collected in steps of 5 eV for 100 eV and data up to 700 eV after the edge data were collected in steps of 1 eV (counting time at each point, 5 sec; total counts $> 10^5$). The EXAFS data were treated using the multiphasic model involving the additive relationship of the EXAFS function (14). EXAFS of the reference compounds, NiO, NiAl₂O₄, and CuO, were recorded under the same conditions after mixing them with appropriate quantities of γ - Al_2O_3 to achieve the same signal-to-noise ratio. The spectra of Ni and Cu metals were obtained from reduced NiO and CuO. In Table 1, we list the relevant data on the reference materials. Fourier transforms (FT) of the EXAFS data were carried out with $k_{\rm min} \sim 3.5$ and $k_{\rm max} \sim 11.0$ Å⁻¹ after weighting the data by k^3 . In Fig. 2 we show typical raw EXAFS data for both Cu and Ni in the case of 2.5 wt.% Ni-variable Cu/Al₂O₃ reduced catalysts.

RESULTS AND DISCUSSION

Ni K-edge

We examine first the Ni EXAFS of the Ni/ γ -Al₂O₃ catalyst since the results of this system are directly relevant to those obtained with the bimetallic Cu-Ni/ γ -Al₂O₃ catalysts. Fourier transforms of the EXAFS data of Ni (5 wt.%)/ γ -Al₂O₃ calcined at different temperatures showed that the first

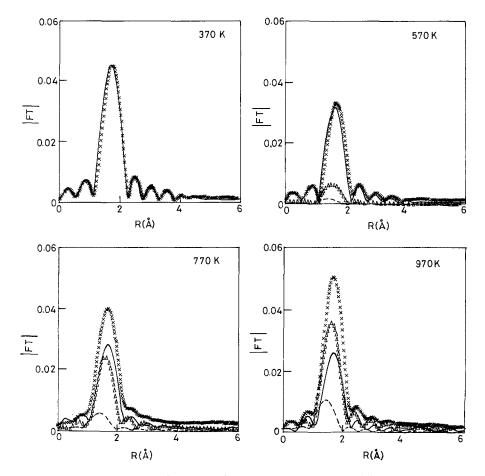


FIG. 3. Fourier deconvolution of the fitted Ni K-EXAFS data of Ni(5 wt.%)/ γ -Al₂O₃ employing three Ni–O distances, calcined at different temperatures. Experimental, crosses; NiO-like phase, full line; Ni–O (tetrahedral) in NiAl₂O₄, broken line; Ni–O (octahedral) in NiAl₂O₄, triangles.

TABLE	2
-------	---

Calcination temperature (K)	Calcined systems									Reduced at 770 K									
	Ni-O tet(NiAl ₂ O ₄)			Ni-O oct(NiAl ₂ O ₄)			Ni-O oct(NiO)			Ni-O(tet)			Ni-O(oct)				Ni-Ni(Ni metal)		
	N	R	$\Delta \sigma^2$	N	R	$\Delta \sigma^2$	N	R	$\Delta \sigma^2$	N	R	$\Delta \sigma^2$	N	R	$\Delta \sigma^2$	N	R	$\Delta \sigma^2$	
370							6.0	2.11	0.001				2.0	2.1 ^b	0.001	9.5	2.48	0.001	
570	0.4	1.83	0.0	1.5	1.97	0.001	4.1	2.08	0.002	0.4	1.83 ^c	0.0	1.5	1.97 ^c	0.001	8.5	2.50	0.002	
770	0.8	1.83	0.0	3.2	1.98	0.002	3.0	2.08	0.0	0.8	1.83 ^c	0.0	3.2	1.98 ^c	0.002	5.5	2.48	0.001	
970	1.2	1.83	0.0	4.0	1.97	0.0	2.5	2.08	0.003	1.2	1.83 ^c	0.0	4.0	1.97 ^c	0.0	4.0	2.48	0.001	

^a The tet and oct stand for tetrahedrally and octahedrally coordinated Ni, respectively. N, R, and $\Delta \sigma^2$ stand for the coordination number, the interatomic distance, and the disorder term of the nearest neighbours.

^b Pure NiO-like phase.

° NiAl₂O₄ phase.

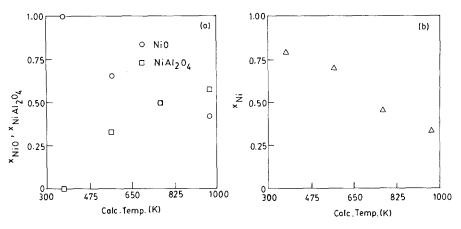


FIG. 4. (a) Variation of the fractions of NiO and NiAl₂O₄ in Ni (5 wt.%)/ γ -Al₂O₃ with calcination temperature. (b) Variation of the fraction of metallic Ni produced on reduction with calcination temperature of Ni(5 wt.%)/ γ -Al₂O₃.

peak in the Fourier transform shifts towards lower r-values with increasing calcination temperature. Accordingly, the sample dried at 370 K shows the first peak at 1.64 Å whereas that calcined at 970 K shows the peak maximum at 1.56 Å, indicating that Ni exists in a multiphasic environment in the calcined samples. Multiphasic curve-fitting analysis (14) was carried out on the inversetransformed data (r-window, 1.2–2.0 Å) using the phase and amplitude parameters of Ni-O in NiO. The best fit was obtained when three Ni-O distances were used. Fourier deconvolution of the fitted data are shown in Fig. 3 and the results of the curvefitting analysis are listed in Table 2. The sample dried at 370 K shows only the NiO-like octahedral environment for Ni. Peaks due to Ni with the tetrahedral and octahedral coordinations of NiAl₂O₄ develop progressively with increasing temperature of calcination (Table 2).

The compositions of the Ni/ γ -Al₂O₃ samples calcined at different temperatures were calculated using the additive EXAFS relation,

$$\chi_{\text{total}}(k) = \sum_{i,m} x_i c_{i,m} \chi_{i,m}(k),$$

where x_i is the fraction of the absorbing element in the *i*th phase ($\sum_i x_i = 1$) and $c_{i,m}$ is

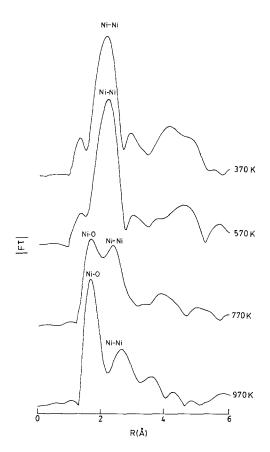


FIG. 5. Fourier transforms of Ni K-EXAFS of different samples of reduced Ni(5 wt.%)/ γ -Al₂O₃ catalysts. Calcination temperatures of the different samples are shown.

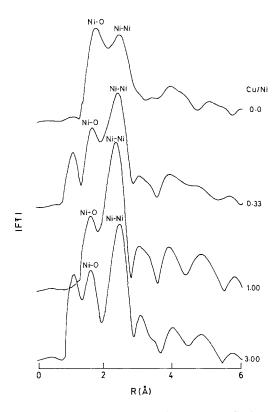


FIG. 6. Fourier transforms of Ni K-EXAFS of reduced Cu-Ni/ γ -Al₂O₃ catalysts (with a total metal loading of 5 wt.%) with different Ni: Cu ratios.

the fraction of the absorbing element in the *m*th coordination of the *i*th phase ($\sum_{m} c_{i,m} = 1$). The above equation can be written in a more specific form as

$$\chi_{\text{total}}(k) = x_{\text{NiO}}\chi_{\text{NiO}}(k) + x_{\text{NiAl}_2\text{O}_4}(c_{\text{tet}}\chi_{\text{tet}}(k) + c_{\text{oct}}\chi_{\text{oct}}(k)).$$

Making use of the reference coordinations listed in Table 1 and the EXAFS results listed in Table 2, we have estimated the values of x_{NiO} , $x_{\text{NiAl}_2\text{O}_4}$, c_{tet} and c_{oct} . The ratio of c_{tet} to c_{oct} has been found to be roughly 1:4, as expected of a mixed spinel. Interestingly x_{NiO} decreases from 1.0 to 0.25 as the calcination temperature increases from 370 to 970 K accompanied by an increase in $x_{\text{NiAl}_2\text{O}_4}$ from 0.0 to 0.75. These results are shown in Fig. 4a to clearly demonstrate how the NiO content decreases with increase in

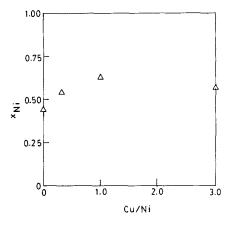


FIG. 7. Variation of the fraction of the Ni metal in the reduced $Cu-Ni/\gamma-Al_2O_3$ catalysts (with a total metal loading of 5 wt.%) with Cu/Ni ratio.

the $NiAl_2O_4$ phase as the calcination temperature increases.

In Fig. 5 we show the Fourier transforms of the reduced samples of Ni/ γ -Al₂O₃. Multiphasic analysis of the data was carried out with a *r*-window of 1.2–2.5 Å, employing the phase and amplitude parameters of Ni–O in NiO and Ni–Ni in Ni metal. The sample dried at 370 K becomes completely reduced to Ni (Table 2), whereas the sample calcined at 970 K shows little reduction. Employing the additive EXAFS relation,

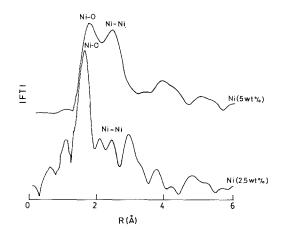


FIG. 8. Fourier transforms of Ni K-EXAFS of reduced Ni/γ -Al₂O₃ catalyst with different Ni loading.

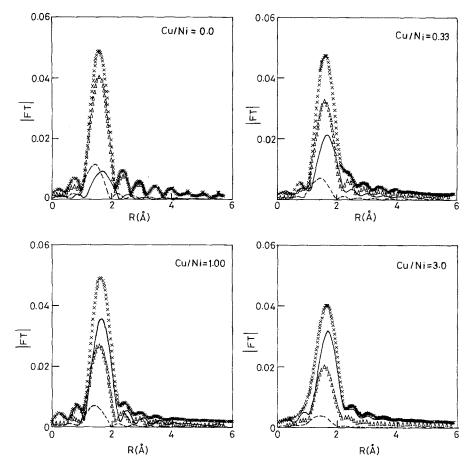


FIG. 9. Fourier deconvolution of the fitted Ni K-EXAFS data of $Cu-Ni/\gamma-Al_2O_3$ (fixed Ni loading of 2.5 wt.%) with different Cu loadings, employing three Ni–O distances. Symbols are same as in Fig. 2.

TABLE 3

Structural Parameters from Ni K-EXAFS of Unreduced and Reduced Cu-Ni/ γ -Al₂O₃ Catalysts (with Fixed 2.5 wt.% Ni Loading)

Catalyst with Ni : Cu		Calcined at 770 K										Reduced at 770 K								
	Ni–O tet(NiAl ₂ O ₄)			Ni-O oct(NiAl ₂ O ₄)		Ni-O oct(NiO)		Ni-O tet(NiAl ₂ O ₄)			Ni-O oct(NiAl ₂ O ₄)			Ni–l (Ni r						
	N	R	$\Delta \sigma^2$	N	R	$\Delta \sigma^2$	N	R	$\Delta \sigma^2$	N	R	$\Delta \sigma^2$	N	R	$\Delta \sigma^2$	N	R	$\Delta \sigma^2$		
100:0	1.0	1.84	0.0	4.0	1.97	0.0005	1.0	2.08	0.0005	1.0	1.84	0.0	4.0	1.97	0.001	2.7	2.5	0.0005		
75:25	0.8	1.84	0.002	3.5	1.98	0.001	2.5	2.08	0.001	0.8	1.84	0.001	3.5	1.98	0.001	4.0	2.51	0.0003		
50:50	0.8	1.84	0.0	2.5	1.97	0.001	3.2	2.08	0.0	0.8	1.84	0.0	2.5	1.97	0.001	7.5	2.54	0.0001		
25:75	0.5	1.83	0.001	2.0	1.97	0.002	3.5	2.08	0.004	0.5	1.83	0.0	2.0	1.97	0.002	9.0	2.53	0.001		

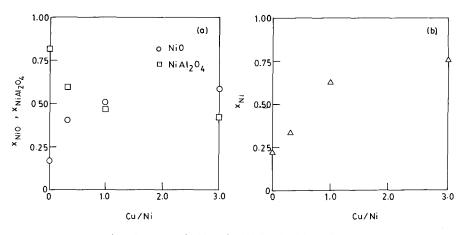


FIG. 10. (a) Variation of the fractions of NiO and NiAl₂O₄ of calcined Cu–Ni/ γ -Al₂O₃ catalysts (fixed Ni loading of 2.5 wt.%) with Cu/Ni ratio. (b) Variation of the fraction of metallic Ni produced on reduction of Cu–Ni/ γ -Al₂O₃ (fixed Ni loading of 2.5 wt.%) with Cu/Ni ratio.

$$\chi_{\text{total}}(k) = x_{\text{Ni}}\chi_{\text{Ni}}(k) + x_{\text{NiO}}\chi_{\text{NiO}}(k) + x_{\text{NiAl}_2O_4}(c_{\text{tet}}\chi_{\text{tet}}(k) + c_{\text{oct}}\chi_{\text{oct}}(k)),$$

we have obtained x_{Ni} in the reduced samples. The results are presented in Fig. 4b. Assuming no reduction in Ni–Ni coordination of the reduced phase due to particle size effects, we find the amount of Ni metal in the reduced sample to be roughly proportional to that of the NiO-like phase in the calcined sample; NiAl₂O₄ is obviously not reduced readily at 770 K. We conclude that the reducibility of Ni in the Ni/ γ -Al₂O₃ catalyst depends on the concentration of the NiO-like phase in the calcined sample.

We now examine the promotion effect of Cu towards the reduction of nickel in the bimetallic Cu-Ni/ γ -Al₂O₃ catalysts. While studying bimetallic catalysts as a function of the relative concentration of the metals, it is customary to keep the total metal loading constant, and vary the ratio of the two metals. Type 2 catalysts (see Experimental section) discussed in this paper belong to this category. Fourier transforms of the Ni K-EXAFS of the Type 2 Cu-Ni/ γ -Al₂O₃ catalysts with a total metal loading of 5 wt.%, reduced at 770 K for 3 h are shown in Fig. 6. We see that catalysts containing Cu undergo greater reduction of Ni than the pure Ni/ γ -Al₂O₃ catalyst. The extent of re-

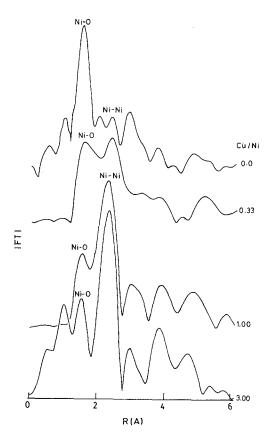


FIG. 11. Fourier transforms of Ni K-EXAFS of reduced Cu–Ni/ γ -Al₂O₃ catalysts (fixed Ni loading of 2.5 wt.%) with different Cu loadings.

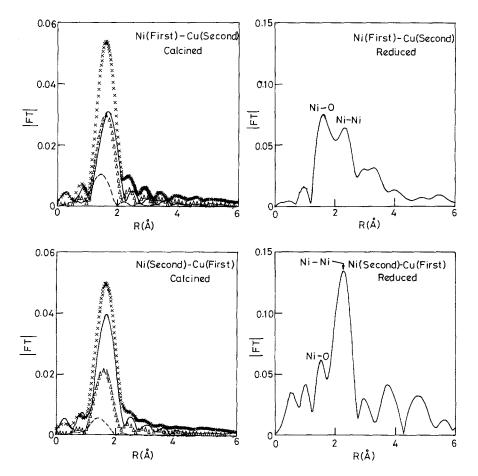


FIG. 12. Fourier deconvolution of the fitted Ni K-EXAFS data of two-stage impregnated Cu–Ni/ γ -Al₂O₃ (Cu/Ni = 0.5, each 2.5 wt.%). Fourier transforms of Ni K-EXAFS of these catalysts on reduction are also shown.

duction of Ni was estimated by multiphasic curve-fitting analysis and the results are presented in Fig. 7 as a function of the relative proportion of Cu in the catalyst. The catalyst with a Ni : Cu ratio of 50 : 50 seems to show the maximum reduction. This observation can be understood if one takes into account the variation in the reducibility of Ni/ γ -Al₂O₃ with Ni-metal loading. In Fig. 8 we show the Fourier transforms of reduced Ni/ γ -Al₂O₃ with 2.5 wt.% and 5 wt.% loading. One readily sees that the catalyst with 5 wt.% metal loading undergoes greater reduction.

In order to understand more fully the reducibility of Ni with Cu loading, we have studied Cu-Ni/ γ -Al₂O₃ catalysts with a fixed Ni loading of 2.5 wt.%, but with varying Ni/Cu ratios (Type 3 preparation, see Experimental section). Multiphasic curve-fitting analysis employing three Ni-O distances was carried out on the inverse Fourier-transformed data; Fourier deconvolutions of the fitted data are shown in Fig. 9. We find that with increasing Cu loading, the proportion of the NiO-like phase increases and is accompanied by a decrease in the NiAl₂O₄-like phase (see Table 3 and Fig. 10a). The Fourier transforms of these catalysts after reduction show that the extent of reduction to metallic Ni increases from $\sim 25\%$ (in the absence of any Cu in Ni/

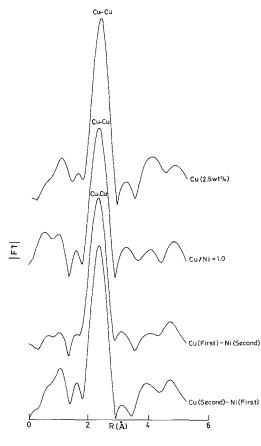


FIG. 13. Fourier transforms of Cu K-EXAFS of some Cu catalysts after reduction.

 Al_2O_3) to nearly 75% when the Cu/Ni ratio is 75/25 (Fig. 11). In Fig. 10b we depict the variation of metallic Ni obtained on reduction with Cu/Ni ratio. This is also reflected in the decrease in the white-line intensity with increasing Cu content in the raw EXAFS data (Fig. 2).

Comparing Figs. 10(a) and (b), we see that the proportion of reduced Ni formed is directly proportional to the NiO-like phase present before reduction. This would imply that if one can, by some means, prevent the Ni²⁺ ions from interacting with γ -Al₂O₃ during calcination, thereby preferentially promoting the formation of the NiO-like phase (instead of the NiAl₂O₄-like phase), there would be greater proportion of metallic Ni on reduction. We would confirm this conjecture by two-stage impregnations of the bimetallic catalysts (Type 4, see Experimental section). In Fig. 12 we show the Fourier transforms of the Ni K-EXAFS of the two-stage impregnated samples before and after reduction. The coordination number of Ni in the NiO-like phase is low (2.7) after calcination in the sample where Ni was first impregnated compared to that (3.6) where Cu was first impregnated. The Fourier transforms of the reduced catalysts show that the reduction to metallic Ni is significantly higher in the case where Cu was first impregnated. Accordingly, the Ni-Ni coordination is 8.3 in this case compared to that when Ni was first impregnated (4.0). These observations establish that the promotion effect of Cu on Ni is through enhancing the formation of the NiO-like phase during calcination.

Cu K-EXAFS

Copper in all copper-containing systems undergoes almost complete reduction, as also indicated by the absence of the whiteline in the EXAFS (Fig. 2). In Fig. 13 the Fourier transforms of some of the copper systems after reduction are illustrated. The Cu-Cu distance in the reduced samples does not differ much from that of the Cu metal bulk; there is about 25% reduction in the Cu-Cu coordination which accounts for the dispersion of metallic Cu on γ -Al₂O₃.

CONCLUSIONS

From our study of Ni/ γ -Al₂O₃ calcined at different temperatures, we find that Ni interacts with γ -Al₂O₃ during calcination, Ni being present mainly in the highly dispersed NiO-like phase at low calcination temperatures. With an increase in the calcination temperature, Ni ions form NiAl₂O₄ by interaction with the support. The higher the calcination temperature, the greater is the proportion of the aluminate phase. The metallic Ni formed after reduction is almost entirely due to the reduction of the NiO-like phase (Fig. 4a and b). The NiO phase in the calcined samples and the Ni metal in the reduced samples vary similarly with the calcination temperature.

At low metal loadings, Ni tends to form the aluminate (11). When surface saturation is reached, NiO segregates out. The percentage reduction of Ni, therefore, increases with the metal loading. Coimpregnating with Cu results in partially covering the γ -Al₂O₃ surface with a CuO-like or $CuAl_2O_4$ -like phase, thereby decreasing the formation of the NiAl₂O₄ phase. We, therefore, see that with increasing Cu-content (at fixed Ni loading), the proportion of the NiOlike phase in the calcined state as well as the formation of metallic Ni on reduction increase. It is to be noted that Cu in the form of dispersed CuO or $CuAl_2O_4$ is more easily reducible than the surface Ni aluminate. The idea that in bimetallic Cu-Ni catalysts Cu acts as a barrier for Ni to interact with γ -Al₂O₃, is further confirmed by two-stage impregnation experiments. When the support is first impregnated with Cu, it covers the γ -Al₂O₃ surface and Ni subsequently introduced remains in the dispersed NiO-like phase which then becomes reduced readily to Ni metal.

ACKNOWLEDGMENTS

The authors thank the Department of Science and Technology and the University Grants Commission for support of this research. One of the authors (GUK) thanks the Council for Scientific and Industrial Research for a research fellowship.

REFERENCES

- Charcosset, H., Frety, R., Soldat, A., and Trambouze, Y., J. Catal. 22, 204 (1971).
- 2. Roman, A., and Delmon, B., J. Catal. 30, 333 (1973).
- (a) Gentry, S. J., Hurst, N. W., and Jones, A., J. Chem. Soc. Faraday Trans. 1 77, 603 (1981); (b) Sinfelt, J. H., Via, G. H., Lytle, F. W., Catal. Rev. Sci. Eng. 26, 81 (1984).
- Gharpurey, M. K., and Emmett, P. H., J. Phys. Chem. 65, 1182 (1961).
- Sachtler, W. M. H., and van der Plank, P., Surf. Sci. 18, 62 (1969).
- Carr, P. F., and Clarke, J. K. A., J. Chem. Soc. A 985 (1971)
- Bartholomew, C. H., Pannell, R. B., and Fowler, R. W., J. Catal. 79, 34 (1983).
- Lo Jacono, M., Schiavello, M., and Cimino, A., J. Phys. Chem. 75, 1044 (1971).
- 9. (a) Greegor, R. B., Lytle, F. W., Chin, R. L., and Hercules, D. M., J. Phys. Chem. 85, 1232 (1981);
 (b) Friedman, R. M., Freeman, J., Lytle, F. W., J. Catal. 55, 10 (1978).
- Ertl, G., Hierl, R., Knözinger, H., Thiel, N., and Urbach, H. P., *Appl. Surf. Sci.* 5, 49 (1980).
- de Bokx, P. K., Wassenberg, W. B. A., and Geus, J. N., J. Catal. 104, 86 (1987).
- Bernardo, C. A., Alstrup, I., and Rostrup-Nielsen, J. R., J. Catal. 96, 517 (1985).
- Sankar, G., Vasudevan, S., and Rao, C. N. R., J. Phys. Chem. 90, 5325 (1986).
- 14. (a) Kulkarni, G. U., Sankar, G., and Rao, C. N. R., Z. Phys. B.: Condens. Matter 73, 529 (1989); (b) Sankar, G., Kulkarni, G. U., and Rao, C. N. R., Prog. Cryst. Growth Charact. 18, 67(1989).